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ACOUSTIC RESONANCE IN SUBSONIC AERODYNAMIC INTERACTION OF CASCADES 

R. A. Izmailov, V. B. Kurzin, and V. L. Okulov UDC 621.515:534 

It is known [i] that acoustic resonance could take place in turbomachinery cascades 
when frequencies of any periodic disturbances coincide with characteristic frequencies of 
flow fluctuations in cascades. The results of studies on this phenomenon are given in [2, 
3] for the case when acoustic disturbances are caused by fluctuations in flow in the trailing- 
edge wakes. However, the most powerful, constantly acting, and periodic source of distur- 
bances in turbomachines is the aerodynamic interaction of the impeller and the guide vanes. 
The present work is devoted to the experimental and theoretical determination of conditions 
for its appearance. 

i. Consider two annular cascades with one of them rotating about the axis of symmetry 
z at an angular velocity ~. Introduce a stationary cylindrical coordinate system (., 8, z) 
and also a moving system (r, 8 1 , z) rigidly fixed to the rotating cascade so that 

0 = 01+ Qt. (1.1) 

When the flow past each of these cascades is uniform, the velocities are periodic func- 
tions of 8 with periods 2~/N, 2D/N I, where N and N I are the number of blades in the stator 
and rotor cascades, respectively, i.e., 

V(r,O,z)= ~ v.(r,z) exp(inNO), 
oo 

V 1 (1', 01, z ) =  E 121n (r, z) exp(inNl01). 
~=--oo 
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In the stationary coordinate system the velocity field V l has the following form in 
view of Eq. (i.i) 

V l =  ~ v r ~ e x p [ i n N x ( O - - Q t ) ] ,  ( 1 . 2 )  

which  i s  a s y s t e m  o f  t r a v e l i n g  waves  a l o n g  t h e  c i r c u m f e r e n c e .  

The s t a t o r  c a s c a d e  l o c a t e d  in  t h i s  f i e l d  w i l l  o b v i o u s l y  e x p e r i e n c e  p e r i o d i c  e f f e c t  wh ich ,  
i n  t h e  l i n e a r  a p p r o x i m a t i o n ,  r e d u c e s  t o  a c o u s t i c  d i s t u r b a n c e s  o f  t h e  f l u i d  w i t h  a f r e q u e n c y  
s p e c t r u m  I z n  = nNz~ (n = •  •  . . . ) .  I n  t h e i r  t u r n ,  t h e  r o t o r  b l a d e s ,  i n t e r a c t i n g  w i t h  t h e  
v e l o c i t y  f i e l d  V, r e p r e s e n t  a s y s t e m  o f  a c o u s t i c  d i s t u r b a n c e  s o u r c e s  w i t h  t h e  f r e q u e n c y  s p e c -  
t r u m  I n  = nN~ (n = •  • . . . .  ) .  

I f  i t  i s  a s sumed  t h a t  t h e  mean s t e a d y  f l o w  i s  p o t e n t i a l  and i s e n t r o p i c ,  t h e n ,  a c c o r d i n g  
t o  [ 4 ] ,  t h e  d e t e r m i n a t i o n  o f  t h e  v e l o c i t y  p o t e n t i a l  o f  t h e  a b o v e - m e n t i o n e d  a c o u s t i c  d i s t u r -  
b a n c e s  c o u l d  be r e d u c e d  t o  t h e  s o l u t i o n  o f  t h e  nonhomogeneous  wave e q u a t i o n  w i t h  v a r i a b l e  
coefficients 

~ 2 L ( O ) = F ~ ( t ,  p) + F i ( t ,  p) ( 1 . 3 )  

with homogeneous Neumann conditions at the blade surfaces and in the presence of radiation. 
Here F I and F 2 are functions that describe physical no-slip conditions on the blades with 
aerodynamic interaction of cascades. 

In what follows we shall consider only those components of acoustic disturbances which 
arise as a result of interaction of the stator blades with the velocity field (1.2) created 
by the rotor blades. The corresponding function Fl(t, p), taking into consideration the 
variable coefficients of Eq. (1.3) due to the velocity field V, is expressed in a general 
form as follows: 

FI= ~ 2 fns(r,z)expii[(nNl + sN)O--%int]}, 
~ = nNl fL  

(1.4) 

Applying the principle of superposition to the solution of Eq. (1.3), an elliptic equa- 
tion in the respective amplitude function ~n may be obtained for each harmonic on the right- 
hand side of Eq. (1.4) 

L-(~.)+Z~.~.=~I~ (n = 0, _+ l, + 2, . . . ), (1.5) 
where 

Fin = e inN1~ ~ ].s(r,z)@ 'N~ (1.6) 

Expand ~in in terms of eigenfunctions for the flow fluctuations across the given blade 
assuming a complete set of these functions: 

N--I 

E E c c")'' (1 7) : p m ~ p m .  
p=Im-~-I 

It is known [i] that eigenfunctions for the above problem have a generalized periodicity 
along the arc, i.e., have a form 

In general, 
discrete [5]. 

~;vm = ~ %r~l (r, Z) exp [i (1N + m) 0], (1 .8 )  

the respective eigenvalues of the problem kpm are complex and their set is 
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Assuming ~,pmll = i, we find from (1.7) 

D 

where D is the region of the solution to the problem; ~pm is the complex conjugate function 
of ~pm" If the integral along the region D is reduced to a periodic integral, then the inter- 
action with respect to the variable e using Eqs. (1.6) and (1.8) leads to 

2~ 

~ Pl~gp~d0= / 0 for nN1 + iN:kin, (1.9) 
t2n/n~%m~ for  nN 1 + jN  = m 0 

(j = 0 , •  • . . . .  ). 

Expressing the solution to Eq. 
and using Eq. (1.7) we get 

(1.5) also in the form of a series of eigenfunctions, 

~n ~ X pm pm 
.=1 m=l ~ n -  (kpma/b) ~" 

Here a is the velocity of sound in the freestream and b is the reference length of blades. 

In view of Eq. (1.9), the terms that are equal to zero in this expression are those 
which do not satisfy the condition 

O < m = n N I + ] N < N  ( n , j  = 0, _ t  . . . .  ). (1.10) 
I t  f o l l o w s  t h a t  a c o u s t i c  r e s o n a n c e  in  t h e  f l o w  t h r o u g h  t h e  s t a t o r  b l a d e s  due t o  t h e  

i n t e r a c t i o n  o f  b l a d e s  c o u l d  o c c u r  o n l y  when 

where  mpm* = Re (kDm*a/b)  i s  t h e  e i g e n f r e q u e n c y  o f  f l u i d  f l u c t u a t i o n s  and t h e  c o r r e s p o n d i n g  
e i g e n f u n c t i o n  s a t i ' s f i e s  ( 1 . 1 0 ) .  

I t  i s  more c o n v e n i e n t  t o  e x p r e s s  ( 1 . 1 0 )  in  t h e  fo rm 

[NI ] 0 < ~ m = 2 n  n - - ~ - + ]  < 2 n  ( n ~ j = 0 , _ _ _ ~ j . . . )  (I.ii) 

(Dm is the phase-shift parameter of the characteristic flow fluctuations through the cascade). 

2. The phenomenon of acoustic resonance caused by the interaction of annular cascades 
was first discovered experimentally in the Kalinin Leningrad Physics Institute (LPI) compres- 
sor design laboratory while investigating unsteady processes in centrifugal compressor stages 
[6]. More careful studies of this phenomenon were conducted using special apparatus [7] 
with a miniature integrating semiconductor pressure transducer having a characteristic fre- 
quency range of 50-70 kHz, a differential broadband constant current amplifer, and sensors 
to determine compressor rotor frequency. 

The signals were recorded in a multiple beam oscilloscope SI-33, rotation frequency 
was measured by the frequency meter Ch3-33, and the measurement cycle was synchronized with 
flash from the photographic camera RFK. 

The apparatus ensures the measurement of rapidly varying fluctuations in static pressure 
in the frequency range 0-10 kHz with dynamic error not exceeding 5%. The conventional mea- 
surement techniques [8] were used to determine the quantities required to obtain the aero- 
thermodynamic characteristics of the compressor. 

The object of study was a single-stage centrifugal compressor whose rotor diameter D o = 
0.275 M with number of blades N l = 16 and exit angle ~ = 49 ~ . The number blades in the dif- 
fuser was varied (N = 24, 19, 13, and 7). The inlet and exit diameters of the diffuser D I = 
1.09D 0 and D 2 = 1.43D0 remained unchanged, as were the geometric parameters of the blade 
sections (the mean line of blade sections was a circular arc with angles at inlet and exit 
being 20 and 32, respectively). 
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Fig. 1 

In the experiment, fluctuating pressures were measured at specific points in the inter- 
stage ducts of the rotor and diffuser, at fixed angles of attack at the cascade inlet, and 
for different values of mass flow. The location of static-pressure sensors (A...G) at the 
front wall of the diffuser along the duct centerline is shown in Fig. i. 

Typical oscillograms of pressure fluctuations at characteristic impeller sections for 
maximum flow rate are shown in Fig. 2. When the impeller rotational speed is varied gradual- 
ly, appreciable increase in amplitudes of fluctuation in the duct is observed at certain 
conditions (f = N~ = 2520 Hz) and have a right sinusoidal form. The amplitudes of fluctua- 
tions are small outside these conditions and the nature of fluctuations is less periodic. 

The inlet conditions for the variations in relative amplitudes of pressure fluctuations 
in the diffuser are shown in Fig. 3 with N = 24, @2 = 0.28, 0.22, and 0.16 at angles-of-attack 

= -ii, 0, and 8 ~ (a-c). It is seen that the increase in pressure fluctuations at certain 
conditions has a clear resonant character. It is worth noting here that at 1640 Hz and 3300 
Hz the amplitude of fluctuations increases most significantly at the center of the duct and, 
at 1900 Hz, only at the end of the duct. A similar situation exists even for blade diffusers 
with N = 19 and 13. 

The last condition, and also the fact that the nature of fluctuations is nearly har- 
monic (Fig. 2) in the presence of increased pressure fluctuations, indirectly suggest that 
the observed phenomenon is acoustic resonance. However, a sound basis for this interpreta- 
tion of experimental data is given by results of the comparison of the frequencies of fluctua- 
tions at the above conditions with the eigenfrequencies of the fluctuations in blade diffusers. 

3. Consider, in the increasing order of complexity, four design models to determine 
eigenfrequencies of fluid fluctuations in a bladed diffuser which is considered the object 
of the study since the corresponding problem for rotating cascades is not yet solved. 

It is possible to most simply estimate the eigenfrequencies by modeling the blade dif- 
fuser as a straight duct whose length ~ is equal to the mean line of interblade passage. 
Then the eigenfrequency is determined by the equation 

ma(t + M~) ( m = t ,  2~ . . . ) ,  ( 3 . 1 )  1= 2(z+~1+~2 ) 

where  Mc i s  t h e  mean f l ow  Mach number in  t h e  d u c t ;  $1,  Y2 a r e  c o r r e c t i o n s  f o r  t h e  open ends  
a t  t h e  i n l e t  and o u t l e t .  A c c o r d i n g  t o  [ 9 ] ,  ~j = 0 .6Rj  (Rj i s  t h e  r a d i u s  o f  t h e  o p e n i n g ) .  

The s e c ond  model  has  a more complex  g e o m e t r y  o f  t h e  r e g i o n  ( F i g .  4a)  b u t  t h e  c o r r e s p o n d -  
ing  m a t h e m a t i c a l  p rob l em r e d u c e s  t o  t h e  d e t e r m i n a t i o n  o f  t h e  r e d u c e d  f r e q u e n c y  p a r a m e t e r  
o f  t h e  f l u i d  f l u c t u a t i o n s  when a n o n t r i v i a l  s o l u t i o n  t o  t h e  H e l m h o l t z  e q u a t i o n  e x i s t s  in  
t h e  r e g i o n  o u t s i d e  t h e  p l a t e s  w i t h  homogeneous  Neumann c o n d i t i o n s  on t h e  p l a t e s ,  r a d i a t i o n  
c o n d i t i o n s ,  and a g e n e r a l i z e d  p e r i o d i c i t y  c o n d i t i o n  a l o n g  t h e  c i r c u m f e r e n t i a l  c o o r d i n a t e .  

In  t h e  t h i r d  and f o u r t h  m o d e l s ,  c h a r a c t e r i s t i c  f l u c t u a t i o n s  o f  t h e  f l u i d  a r e  c o n s i d e r e d  
i n  t h e  n e i g h b o r h o o d  o f  t h e  p l a n e  c i r c u l a r  c a s c a d e  ( F i g .  4 b ) ,  which  i s  c o m p r i s e d  o f  segments  
f rom l o g a r i t h m i c  s p i r a l s  w i t h  and w i t h o u t  t h e  c o n s i d e r a t i o n  o f  b a s i c  s t a t i o n a r y  f l o w ,  r e s p e c -  
t i v e l y .  In the last model it was assumed that the velocity of the basic stationary flow, 
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TABLE 1 

N M h e N; h~ . h~ I h4 

0,27 4,68 3,99 4,40 5 , i9  - -  i 0 , t2  4,80 - -  i 0,25 
24 0,3i 5,43 7,78 8,99 7,13 - -  i 0 , t4  5,55 - -  i 0,45 

0,55 9,42 9,00 i3,55 i t ,52  - -  i 0 , i7  9,26 - -  i 0,72 

i3 

0,23 
0,32 
0,37 
0,44 
0,53 

3,99 
5,48 
6,28 
7,62 

3,88 
, 7,35 

t0 ,6 i  
i3,20 
t4,73 

4,40 
8,99 

i t , 48  
t3,55 
i5,71 

5, i0  - -  i 0,15 
6,33 - -  i 0 , t7  
8,75 - -  i 0,25 
9,91 - -  i 0,19 

10,90 - -  i 0,31 

4, t2  - -  i 0,52 
5, i8  - -  ~ 0,63 
6,54 - -  ~ 0,70 
7,73 - -  t 0,9i  
9,i6 - -  ~ t ,00 

which is a spiral flow, in the interblade passages is sufficiently small that when r > R, 
(R, < Rz), the square of the local Mach number can be neglected. As far as acoustic distur- 
bances are concerned, it is assumed that their sources are absent when r ~ R, and r > R 2. 

Within the framework of these assumptions the problem of characteristic (eigen) flow 
fluctuations of the fluid through circular cascade is reduced [ii] to the solution of the 
equation 

A u + k ~ u + 2 i k  T - ~ r  + ~ 0~ 7 7  = o. (3.2) 
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Here u is the amplitude function for the nonstationary flow component; o = Q/2~aRI, 6 = F/ 
2~0,Ri; Q and F, source strength and circulation of the vortex that induce the basic station- 
ary flow, r = r/R I, k = mRz/a; ~, frequency of fluctuations of the fluid. The parameter sought 
is k, that corresponds to a nontrivial solution of Eq. (3.2), satisfying the following boun- 
dary conditions: 

Homogeneous, no-slip boundary conditions on the blade profiles 

0u 
= 0 ,  (r, 0 ) ~  4 ( / = 1 ,  2 . . . . .  N - - I )  ( 3 . 3 )  0vj 

( v j  i s  t h e  n o r m a l  t o  L j ,  Lj i s  t h e  c o n t o u r  o f  t h e  j - t h  b l a d e ) ;  

g e n e r a l i z e d  p e r i o d i c i t y  c o n d i t i o n  

u (r, 0 + ~z) = 0~"'% (r, O) 
(~z = 2zdN, ~,,~ -- ma (m = 1 ,2  . . . .  , N - - t ) ) ;  ( 3 . 4 )  

absence of acoustic disturbances when r > R 2 

u(r,  O) = e -i'~~ ~ a~H~~ (k~)e~~ (3.5) 

when R,  < r < R 1 

u(r,  O) = e -ih~l"; ~ b/~(kT)e~~ ( 3 . 6 )  

where  J ~ ( x )  i s  t h e  B e s s e l  f u n c t i o n ;  H ~ ( 1 ) ( x )  i s  t h e  Hanke l  f u n c t i o n  o f  t h e  f i r s t  t y p e  w i t h  com- 

p l e x  i n d i c e s  ~ = / ( s  + k6)  2 - k 2 ( o  2 + 6 2 ) [ t h e  s q u a r e  r o o t  i s  d e t e r m i n e d  f rom t h e  c o n d i t i o n  
Re(G) ~ 0 ] .  

The s o l u t i o n  t o  t h i s  p r o b l e m  i s  s o u g h t  i n  t h e  c l a s s  o f  f u n c t i o n s  t h a t  a r e  unbounded 
a t  t h e  s h a r p  t r a i l i n g  e d g e s  o f  b l a d e  p r o f i l e  and t h a t  s a t i s f y  t h e  c o n d i t i o n  o f  z e r o - c i r c u l a -  
t i o n  o f  t h e  u n s t e a d y  componen t  o f  t h e  v e l o c i t y  a r o u n d  e a c h  p r o f i l e .  When t h e  l a s t  c o n d i t i o n  
i s  s a t i s f i e d ,  t h e r e  w i l l  be no v o r t e x  wake d o w n s t r e a m  o f  t h e  p r o f i l e s  i n  t h e  c a s c a d e .  How- 
e v e r ,  a s  shown by t h e  i n v e s t i g a t i o n  c a r r i e d  o u t  e a r l i e r  f o r  s t r a i g h t  c a s c a d e s  [12] a t  low 
Mach n u m b e r s ,  t h e  i n c l u s i o n  o f  v o r t e x  wakes  p r a c t i c a l l y  does  n o t  a f f e c t  t h e  v a l u e s  o f  e i g e n -  
f r e q u e n c i e s  o f  f l o w  f l u c t u a t i o n s .  

A c o m p a r i s o n  o f  e x p e r i m e n t a l  d a t a  w i t h  t h e  c o m p u t a t i o n  f o r  t w o - b l a d e d  d i f f u s e r s  i s  g i v e n  
in  t h e  t a b l e  where  M i s  t h e  Mach number  o f  t h e  b a s i c  s t e a d y  f l o w  a t  t h e  i n l e t  t o  t h e  c a s c a d e  
( r  = R 1) f o r  wh ich  a c o u s t i c  r e s o n a n c e  was e x p e r i m e n t a l l y  o b s e r v e d  a t  t h e  r e d u c e d  f r e q u e n c i e s  
ke = NI~RI/a (a = 340 m/sec). 

A comparison of the values of reduced frequency of characteristic fluctuations kl = 
2~fRl/a, computed for the first model from Eq. (3.1) with k e shows that there is a good agree- 
ment at certain conditions of acoustic resonance. However, ~ in the majority of cases, the 
values of k I and k e significantly differ from each other since the numerical model reflects 
neither the influence of other blades of the cascade nor the influence of diffusion in the 
interblade passages on eigenfrequencies. Theoretical estimate of the limit of the applica- 
bility of this model has not yet been obtained. 

Values of k 2 = ~R1/a , where m is the circular frequency of characteristic fluctuations 
are computed from the asymptotic relation (as N + ~) for the second model [i0]. In this 
expression the phase-shift parameter that represents the cascade effect is absent. To some 
extent such a model reflects diffusivity of the interblade passage, but with respect to the 
other parameters it is even worse than the former. 

Complex eigenvalues of the problem (3.2)-(3.6), k 3 are computed for M = 0, and k 4 for 
values of M corresponding to experimental conditions. Here their real parts determine eigen- 
frequencies of flow fluctuations and the imaginary parts represent the loss of acoustic energy 
through radiation to the surrounding space. 

It is worth noting that the condition for generalized periodicity (3.4) in computing 
the above-mentioned quantities was carried out with the inclusion of (i.ii), i.e., the phase- 
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shift parameter for the first diffuser (N = 24) is taken equal to ~m = 2~NI/N = 4~/3 (N1 = 
16), and for the second (N = 13), ~m = 0.462~. 

The very good agreement of Re (k 4) and ke, in our view, indicates that all the principal 
factors that determine characteristic fluctuations of the fluid in practical designs are 
included in the theoretical model. Actually, for the first modes of characteristic fluctua- 
tions of the fluid in the given diffusers, three-dimensionality is of secondary importance 
since their dimension in the direction of the axis of rotation is many times less than the 
length of the interblade passages. The approximate formulation of conditions at the inlet 
and exit from the cascade (3.5), (3.6) also negligibly affects results, perhaps, because, 
as shown by the investigation for straight cascade [12], characteristic fluctuations are 
localized quite close to its neighborhood. 

Thus the results of these comparisons lead to the following conclusions. 

i. Since conditions for increased pressure fluctuations coincide with conditions at 
which the fluid flow through the cascade could accomplish characteristic fluctuations, the 
corresponding phenomena can be interpreted as acoustic resonance. 

2. In order to determine these conditions using the available computational techniques 
with sufficient reliability, it is possible to recommend only the algorithm [ii], which is 
based on the solution to the problem (3.2)-(3.6). Here, if the source of disturbance is 
the aerodynamic interaction of cascades, the solution to the above-mentioned problem must 
be sought with additional condition (i.ii). 
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